Page 1

Displaying 1 – 14 of 14

Showing per page

J -invariant of linear algebraic groups

Viktor Petrov, Nikita Semenov, Kirill Zainoulline (2008)

Annales scientifiques de l'École Normale Supérieure

Let G be a semisimple linear algebraic group of inner type over a field F , and let X be a projective homogeneous G -variety such that G splits over the function field of X . We introduce the J -invariant of G which characterizes the motivic behavior of X , and generalizes the J -invariant defined by A. Vishik in the context of quadratic forms. We use this J -invariant to provide motivic decompositions of all generically split projective homogeneous G -varieties, e.g. Severi-Brauer varieties, Pfister quadrics,...

Joint subnormality of n-tuples and C₀-semigroups of composition operators on L²-spaces

Piotr Budzyński, Jan Stochel (2007)

Studia Mathematica

Joint subnormality of a family of composition operators on L²-space is characterized by means of positive definiteness of appropriate Radon-Nikodym derivatives. Next, simplified positive definiteness conditions guaranteeing joint subnormality of a C₀-semigroup of composition operators are supplied. Finally, the Radon-Nikodym derivatives associated to a jointly subnormal C₀-semigroup of composition operators are shown to be the Laplace transforms of probability measures (modulo a C₀-group of scalars)...

Joint subnormality of n-tuples and C₀-semigroups of composition operators on L²-spaces, II

Piotr Budzyński, Jan Stochel (2009)

Studia Mathematica

In the previous paper, we have characterized (joint) subnormality of a C₀-semigroup of composition operators on L²-space by positive definiteness of the Radon-Nikodym derivatives attached to it at each rational point. In the present paper, we show that in the case of C₀-groups of composition operators on L²-space the positive definiteness requirement can be replaced by a kind of consistency condition which seems to be simpler to work with. It turns out that the consistency condition also characterizes...

Jordan- and Lie geometries

Wolfgang Bertram (2013)

Archivum Mathematicum

In these lecture notes we report on research aiming at understanding the relation beween algebras and geometries, by focusing on the classes of Jordan algebraic and of associative structures and comparing them with Lie structures. The geometric object sought for, called a generalized projective, resp. an associative geometry, can be seen as a combination of the structure of a symmetric space, resp. of a Lie group, with the one of a projective geometry. The text is designed for readers having basic...

Jucys-Murphy element and walks on modified Young graph

Akihito Hora (2006)

Banach Center Publications

Biane found out that irreducible decomposition of some representations of the symmetric group admits concentration at specific isotypic components in an appropriate large n scaling limit. This deepened the result on the limit shape of Young diagrams due to Vershik-Kerov and Logan-Shepp in a wider framework. In particular, it is remarkable that asymptotic behavior of the Littlewood-Richardson coefficients in this regime was characterized in terms of an operation in free probability of Voiculescu....

Just-non-SRI*-groups

Leonid A. Kurdachenko, Panagiotis Soules (1999)

Δελτίο της Ελληνικής Μαθηματικής Εταιρίας

Currently displaying 1 – 14 of 14

Page 1