Displaying 421 – 440 of 1463

Showing per page

On finiteness conditions for Rees matrix semigroups

Hayrullah Ayik (2005)

Czechoslovak Mathematical Journal

Let T = [ S ; I , J ; P ] be a Rees matrix semigroup where S is a semigroup, I and J are index sets, and P is a J × I matrix with entries from S , and let U be the ideal generated by all the entries of P . If U has finite index in S , then we prove that T is periodic (locally finite) if and only if S is periodic (locally finite). Moreover, residual finiteness and having solvable word problem are investigated.

On free subgroups of units in quaternion algebras

Jan Krempa (2001)

Colloquium Mathematicae

It is well known that for the ring H(ℤ) of integral quaternions the unit group U(H(ℤ) is finite. On the other hand, for the rational quaternion algebra H(ℚ), its unit group is infinite and even contains a nontrivial free subgroup. In this note (see Theorem 1.5 and Corollary 2.6) we find all intermediate rings ℤ ⊂ A ⊆ ℚ such that the group of units U(H(A)) of quaternions over A contains a nontrivial free subgroup. In each case we indicate such a subgroup explicitly. We do our best to keep the arguments...

On free subgroups of units in quaternion algebras II

Jan Krempa (2003)

Colloquium Mathematicae

Let A ⊆ ℚ be any subring. We extend our earlier results on unit groups of the standard quaternion algebra H(A) to units of certain rings of generalized quaternions H(A,a,b) = ((-a,-b)/A), where a,b ∈ A. Next we show that there is an algebra embedding of the ring H(A,a,b) into the algebra of standard Cayley numbers over A. Using this embedding we answer a question asked in the first part of this paper.

Currently displaying 421 – 440 of 1463