Displaying 501 – 520 of 1463

Showing per page

On hypercentral groups

B. Wehrfritz (2007)

Open Mathematics

Let G be a hypercentral group. Our main result here is that if G/G’ is divisible by finite then G itself is divisible by finite. This extends a recent result of Heng, Duan and Chen [2], who prove in a slightly weaker form the special case where G is also a p-group. If G is torsion-free, then G is actually divisible.

On ideals in regular ternary semigroups

Tapan K. Dutta, Sukhendu Kar, Bimal K. Maity (2008)

Discussiones Mathematicae - General Algebra and Applications

In this paper we study some interesting properties of regular ternary semigroups, completely regular ternary semigroups, intra-regular ternary semigroups and characterize them by using various ideals of ternary semigroups.

On indecomposable projective representations of finite groups over fields of characteristic p > 0

Leonid F. Barannyk, Kamila Sobolewska (2003)

Colloquium Mathematicae

Let G be a finite group, F a field of characteristic p with p||G|, and F λ G the twisted group algebra of the group G and the field F with a 2-cocycle λ ∈ Z²(G,F*). We give necessary and sufficient conditions for F λ G to be of finite representation type. We also introduce the concept of projective F-representation type for the group G (finite, infinite, mixed) and we exhibit finite groups of each type.

On induced morphism of Mislin genera.

Peter Hilton (1994)

Publicacions Matemàtiques

Let N be a nilpotent group with torsion subgroup TN, and let α: TN → T' be a surjective homomorphism such that kerα is normal in N. Then α determines a nilpotent group Ñ such that TÑ = T' and a function α* from the Mislin genus of N to that of Ñ in N (and hence Ñ) is finitely generated. The association α → α* satisfies the usual functiorial conditions. Moreover [N,N] is finite if and only if [Ñ,Ñ] is finite and α* is then a homomorphism of abelian groups. If Ñ belongs to the special class studied...

Currently displaying 501 – 520 of 1463