Displaying 821 – 840 of 10155

Showing per page

An elementary class extending abelian-by- G groups, for G infinite

Carlo Toffalori (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We show that for no infinite group G the class of abelian-by- G groups is elementary, but, at least when G is an infinite elementary abelian p -group (with p prime), the class of groups admitting a normal abelian subgroup whose quotient group is elementarily equivalent to G is elementary.

An extension of Zassenhaus' theorem on endomorphism rings

Manfred Dugas, Rüdiger Göbel (2007)

Fundamenta Mathematicae

Let R be a ring with identity such that R⁺, the additive group of R, is torsion-free. If there is some R-module M such that R M R ( = R ) and E n d ( M ) = R , we call R a Zassenhaus ring. Hans Zassenhaus showed in 1967 that whenever R⁺ is free of finite rank, then R is a Zassenhaus ring. We will show that if R⁺ is free of countable rank and each element of R is algebraic over ℚ, then R is a Zassenhaus ring. We will give an example showing that this restriction on R is needed. Moreover, we will show that a ring due to A....

Currently displaying 821 – 840 of 10155