Poincaré Duality and Groups of Type (FP).
F. Thomas Farrell (1975)
Commentarii mathematici Helvetici
Beno Eckmann, Heinz Müller (1980)
Commentarii mathematici Helvetici
Beno Eckmann, Peter Linnell (1983)
Commentarii mathematici Helvetici
G.I. Leherer (1995)
Inventiones mathematicae
T.A. Springer (1987)
Mathematische Annalen
Lluis Puig (1981)
Mathematische Zeitschrift
J.P. Troallic, G. Hansel (1983)
Semigroup forum
Frédéric Paulin (1989)
Annales de l'institut Fourier
Nous montrons que le sous-groupe des points fixes d’un automorphisme d’un groupe hyperbolique au sens de M. Gromov est de type fini.
J.T. Borrego (1970)
Aequationes mathematicae
J.T. Borrego (1970)
Aequationes mathematicae
Glavosits, Tamás, Száz, Árpád (2002)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Glavosits, Tamás, Száz, Árpád (2004)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
K. Hofmann, F. Wright (1963)
Fundamenta Mathematicae
A.E. Brouwer (1982)
Aequationes mathematicae
Wim H. Hesselink (1978)
Mathematische Zeitschrift
Bohumil Šmarda (1976)
Mathematica Slovaca
Renáta Hrmová (1961)
Matematicko-fyzikálny časopis
François Lemieux, Cristopher Moore, Denis Thérien (2000)
Commentationes Mathematicae Universitatis Carolinae
We consider the question of which loops are capable of expressing arbitrary Boolean functions through expressions of constants and variables. We call this property Boolean completeness. It is a generalization of functional completeness, and is intimately connected to the computational complexity of various questions about expressions, circuits, and equations defined over the loop. We say that a loop is polyabelian if it is an iterated affine quasidirect product of Abelian groups; polyabelianness...
Stephen Donkin (1981)
Journal für die reine und angewandte Mathematik
Tao Xu, Fang Zhou, Heguo Liu (2016)
Czechoslovak Mathematical Journal
In this paper, we study the structure of polycyclic groups admitting an automorphism of order four on the basis of Neumann’s result, and prove that if is an automorphism of order four of a polycyclic group and the map defined by is surjective, then contains a characteristic subgroup of finite index such that the second derived subgroup is included in the centre of and is abelian, both and are abelian-by-finite. These results extend recent and classical results in the literature....