Displaying 361 – 380 of 513

Showing per page

The distribution of eigenvalues of randomized permutation matrices

Joseph Najnudel, Ashkan Nikeghbali (2013)

Annales de l’institut Fourier

In this article we study in detail a family of random matrix ensembles which are obtained from random permutations matrices (chosen at random according to the Ewens measure of parameter θ > 0 ) by replacing the entries equal to one by more general non-vanishing complex random variables. For these ensembles, in contrast with more classical models as the Gaussian Unitary Ensemble, or the Circular Unitary Ensemble, the eigenvalues can be very explicitly computed by using the cycle structure of the permutations....

The Farey graph.

Jones, Gareth A. (1987)

Séminaire Lotharingien de Combinatoire [electronic only]

The local lifting problem for actions of finite groups on curves

Ted Chinburg, Robert Guralnick, David Harbater (2011)

Annales scientifiques de l'École Normale Supérieure

Let k be an algebraically closed field of characteristic p > 0 . We study obstructions to lifting to characteristic 0 the faithful continuous action φ of a finite group G on k [ [ t ] ] . To each such  φ a theorem of Katz and Gabber associates an action of G on a smooth projective curve Y over k . We say that the KGB obstruction of φ vanishes if G acts on a smooth projective curve X in characteristic  0 in such a way that X / H and Y / H have the same genus for all subgroups H G . We determine for which G the KGB obstruction...

The Milgram non-operad

Michael Brinkmeier (1999)

Annales de l'institut Fourier

C. Berger claimed to have constructed an E n -operad-structure on the permutohedras, whose associated monad is exactly the Milgram model for the free loop spaces. In this paper I will show that this statement is not correct.

The permutation group method for the dilogarithm

Georges Rhin, Carlo Viola (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We give qualitative and quantitative improvements on all the best previously known irrationality results for dilogarithms of positive rational numbers. We obtain such improvements by applying our permutation group method to the diophantine study of double integrals of rational functions related to the dilogarithm.

The prevalence of permutations with infinite cycles

Randall Dougherty, Jan Mycielski (1994)

Fundamenta Mathematicae

A number of recent papers have been devoted to the study of prevalence, a generalization of the property of being of full Haar measure to topological groups which need not have a Haar measure, and the dual concept of shyness. These concepts give a notion of "largeness" which often differs from the category analogue, comeagerness, and may be closer to the intuitive notion of "almost everywhere." In this paper, we consider the group of permutations of natural numbers. Here, in the sense of category,...

Currently displaying 361 – 380 of 513