Displaying 61 – 80 of 513

Showing per page

Cayley color graphs of inverse semigroups and groupoids

Nándor Sieben (2008)

Czechoslovak Mathematical Journal

The notion of Cayley color graphs of groups is generalized to inverse semigroups and groupoids. The set of partial automorphisms of the Cayley color graph of an inverse semigroup or a groupoid is isomorphic to the original inverse semigroup or groupoid. The groupoid of color permuting partial automorphisms of the Cayley color graph of a transitive groupoid is isomorphic to the original groupoid.

Cayley's Theorem

Artur Korniłowicz (2011)

Formalized Mathematics

The article formalizes the Cayley's theorem saying that every group G is isomorphic to a subgroup of the symmetric group on G.

Characterizations based on length-biased weighted measure of inaccuracy for truncated random variables

Chanchal Kundu (2014)

Applications of Mathematics

In survival studies and life testing, the data are generally truncated. Recently, authors have studied a weighted version of Kerridge inaccuracy measure for truncated distributions. In the present paper we consider weighted residual and weighted past inaccuracy measure and study various aspects of their bounds. Characterizations of several important continuous distributions are provided based on weighted residual (past) inaccuracy measure.

Collineation group as a subgroup of the symmetric group

Fedor Bogomolov, Marat Rovinsky (2013)

Open Mathematics

Let ψ be the projectivization (i.e., the set of one-dimensional vector subspaces) of a vector space of dimension ≥ 3 over a field. Let H be a closed (in the pointwise convergence topology) subgroup of the permutation group 𝔖 ψ of the set ψ. Suppose that H contains the projective group and an arbitrary self-bijection of ψ transforming a triple of collinear points to a non-collinear triple. It is well known from [Kantor W.M., McDonough T.P., On the maximality of PSL(d+1,q), d ≥ 2, J. London Math. Soc.,...

Currently displaying 61 – 80 of 513