On the Loewy-series of the modular group algebra of a finite p-group.
Let be a finite nonabelian group, its associated integral group ring, and its augmentation ideal. For the semidihedral group and another nonabelian 2-group the problem of their augmentation ideals and quotient groups is deal with. An explicit basis for the augmentation ideal is obtained, so that the structure of its quotient groups can be determined.
We give the characterization of the unit group of , where is a finite field with elements for prime and denotes the special linear group of matrices having determinant over the cyclic group .
We show that any block of a group algebra of some finite group which is of wild representation type has many families of stable tubes.
Assume that S is a commutative complete discrete valuation domain of characteristic p, S* is the unit group of S and is a finite group, where is a p-group and B is a p’-group. Denote by the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). We give necessary and sufficient conditions for to be of OTP representation type, in the sense that every indecomposable -module is isomorphic to the outer tensor product V W of an indecomposable -module V and an irreducible -module...
We characterize the unit group of semisimple group algebras of some non-metabelian groups, where is a field with elements for prime and a positive integer . In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.