Previous Page 2

Displaying 21 – 35 of 35

Showing per page

On the structure of the augmentation quotient group for some nonabelian 2-groups

Jizhu Nan, Huifang Zhao (2012)

Czechoslovak Mathematical Journal

Let G be a finite nonabelian group, G its associated integral group ring, and ( G ) its augmentation ideal. For the semidihedral group and another nonabelian 2-group the problem of their augmentation ideals and quotient groups Q n ( G ) = n ( G ) / n + 1 ( G ) is deal with. An explicit basis for the augmentation ideal is obtained, so that the structure of its quotient groups can be determined.

On the unit group of a semisimple group algebra 𝔽 q S L ( 2 , 5 )

Rajendra K. Sharma, Gaurav Mittal (2022)

Mathematica Bohemica

We give the characterization of the unit group of 𝔽 q S L ( 2 , 5 ) , where 𝔽 q is a finite field with q = p k elements for prime p > 5 , and S L ( 2 , 5 ) denotes the special linear group of 2 × 2 matrices having determinant 1 over the cyclic group 5 .

On tubes for blocks of wild type

Karin Erdmann (1999)

Colloquium Mathematicae

We show that any block of a group algebra of some finite group which is of wild representation type has many families of stable tubes.

On twisted group algebras of OTP representation type

Leonid F. Barannyk, Dariusz Klein (2012)

Colloquium Mathematicae

Assume that S is a commutative complete discrete valuation domain of characteristic p, S* is the unit group of S and G = G p × B is a finite group, where G p is a p-group and B is a p’-group. Denote by S λ G the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). We give necessary and sufficient conditions for S λ G to be of OTP representation type, in the sense that every indecomposable S λ G -module is isomorphic to the outer tensor product V W of an indecomposable S λ G p -module V and an irreducible S λ B -module...

On unit group of finite semisimple group algebras of non-metabelian groups up to order 72

Gaurav Mittal, Rajendra Kumar Sharma (2021)

Mathematica Bohemica

We characterize the unit group of semisimple group algebras 𝔽 q G of some non-metabelian groups, where F q is a field with q = p k elements for p prime and a positive integer k . In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group ( ( C 3 × C 3 ) C 3 ) C 2 of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.

Currently displaying 21 – 35 of 35

Previous Page 2