Linear representations of the group of conjugating automorphisms and the braid groups of some manifolds.
Given a finite-volume hyperbolic 3-manifold, we compose a lift of the holonomy in with the -dimensional irreducible representation of in . In this paper we give local coordinates of the -character variety around the character of this representation. As a corollary, this representation is isolated among all representations that are unipotent at the cusps.
In this paper we explicitly determine the Macdonald formula for spherical functions on any locally finite, regular and affine Bruhat-Tits building, by constructing the finite difference equations that must be satisfied and explaining how they arise, by only using the geometric properties of the building.