Torsion units in integral group rings.
This paper is an expanded version of a talk given at the Banach Center Symposium on Knot Theory in July/August 1995. Its aim is to provide a general survey about trace functions on Iwahori-Hecke algebras associated with finite Coxeter groups. The so-called Markov traces are relevant to knot theory as they can be used to construct invariants of oriented knots and links. We present a classification of Markov traces for the classical types A, B and D.
Let S be a commutative local ring of characteristic p, which is not a field, S* the multiplicative group of S, W a subgroup of S*, G a finite p-group, and a twisted group ring of the group G and of the ring S with a 2-cocycle λ ∈ Z²(G,S*). Denote by the set of isomorphism classes of indecomposable -modules of S-rank m. We exhibit rings for which there exists a function such that and is an infinite set for every natural n > 1. In special cases contains every natural number m >...