Displaying 81 – 100 of 112

Showing per page

The table of characters of some quasigroups

Grzegorz Bińczak, Joanna Kaleta (2007)

Discussiones Mathematicae - General Algebra and Applications

It is known that (ℤₙ,-ₙ) are examples of entropic quasigroups which are not groups. In this paper we describe the table of characters for quasigroups (ℤₙ,-ₙ).

The unit group of F S 3 .

Sharma, R.K., Srivastava, J.B., Khan, Manju (2007)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

The unit groups of semisimple group algebras of some non-metabelian groups of order 144

Gaurav Mittal, Rajendra K. Sharma (2023)

Mathematica Bohemica

We consider all the non-metabelian groups G of order 144 that have exponent either 36 or 72 and deduce the unit group U ( 𝔽 q G ) of semisimple group algebra 𝔽 q G . Here, q denotes the power of a prime, i.e., q = p r for p prime and a positive integer r . Up to isomorphism, there are 6 groups of order 144 that have exponent either 36 or 72 . Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order 144 that are a direct product of two nontrivial...

The Variety of Leibniz Algebras Defined by the Identity x(y(zt)) ≡ 0

Abanina, L., Mishchenko, S. (2003)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary: 17A32; Secondary: 16R10, 16P99, 17B01, 17B30, 20C30Let F be a field of characteristic zero. In this paper we study the variety of Leibniz algebras 3N determined by the identity x(y(zt)) ≡ 0. The algebras of this variety are left nilpotent of class not more than 3. We give a complete description of the vector space of multilinear identities in the language of representation theory of the symmetric group Sn and Young diagrams. We also show that the...

The Yokonuma-Temperley-Lieb algebra

D. Goundaroulis, J. Juyumaya, A. Kontogeorgis, S. Lambropoulou (2014)

Banach Center Publications

We define the Yokonuma-Temperley-Lieb algebra as a quotient of the Yokonuma-Hecke algebra over a two-sided ideal generated by an expression analogous to the one of the classical Temperley-Lieb algebra. The main theorem provides necessary and sufficient conditions for the Markov trace defined on the Yokonuma-Hecke algebra to pass through to the quotient algebra, leading to a sequence of knot invariants which coincide with the Jones polynomial.

Thick subcategories of the stable module category

D. Benson, Jon Carlson, Jeremy Rickard (1997)

Fundamenta Mathematicae

We study the thick subcategories of the stable category of finitely generated modules for the principal block of the group algebra of a finite group G over a field of characteristic p. In case G is a p-group we obtain a complete classification of the thick subcategories. The same classification works whenever the nucleus of the cohomology variety is zero. In case the nucleus is nonzero, we describe some examples which lead us to believe that there are always infinitely many thick subcategories concentrated...

Torsion matrices over commutative integral group rings.

Gregory T. Lee, Sudarshan K. Sehgal (2000)

Publicacions Matemàtiques

Let ZA be the integral group ring of a finite abelian group A, and n a positive integer greater than 5. We provide conditions on n and A under which every torsion matrix U, with identity augmentation, in GLn(ZA) is conjugate in GLn(QA) to a diagonal matrix with group elements on the diagonal. When A is infinite, we show that under similar conditions, U has a group trace and is stably conjugate to such a diagonal matrix.

Torsion units for some almost simple groups

Joe Gildea (2016)

Czechoslovak Mathematical Journal

We investigate the Zassenhaus conjecture regarding rational conjugacy of torsion units in integral group rings for certain automorphism groups of simple groups. Recently, many new restrictions on partial augmentations for torsion units of integral group rings have improved the effectiveness of the Luther-Passi method for verifying the Zassenhaus conjecture for certain groups. We prove that the Zassenhaus conjecture is true for the automorphism group of the simple group PSL ( 2 , 11 ) . Additionally we prove that...

Torsion units in group rings.

Vikas Bist (1992)

Publicacions Matemàtiques

Let U(RG) be the unit group of the group ring RG. In this paper we study group rings RG whose support elements of every torsion unit are torsion, where R is either the ring of integers Z or a field K.

Currently displaying 81 – 100 of 112