The structure of the unit group of the group algebra
The structure of the unit group of the group algebra of the group over any finite field of characteristic 2 is established in terms of split extensions of cyclic groups.
The structure of the unit group of the group algebra of the group over any finite field of characteristic 2 is established in terms of split extensions of cyclic groups.
It is known that (ℤₙ,-ₙ) are examples of entropic quasigroups which are not groups. In this paper we describe the table of characters for quasigroups (ℤₙ,-ₙ).
We consider all the non-metabelian groups of order that have exponent either or and deduce the unit group of semisimple group algebra . Here, denotes the power of a prime, i.e., for prime and a positive integer . Up to isomorphism, there are groups of order that have exponent either or . Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order that are a direct product of two nontrivial...
2000 Mathematics Subject Classification: Primary: 17A32; Secondary: 16R10, 16P99, 17B01, 17B30, 20C30Let F be a field of characteristic zero. In this paper we study the variety of Leibniz algebras 3N determined by the identity x(y(zt)) ≡ 0. The algebras of this variety are left nilpotent of class not more than 3. We give a complete description of the vector space of multilinear identities in the language of representation theory of the symmetric group Sn and Young diagrams. We also show that the...
We define the Yokonuma-Temperley-Lieb algebra as a quotient of the Yokonuma-Hecke algebra over a two-sided ideal generated by an expression analogous to the one of the classical Temperley-Lieb algebra. The main theorem provides necessary and sufficient conditions for the Markov trace defined on the Yokonuma-Hecke algebra to pass through to the quotient algebra, leading to a sequence of knot invariants which coincide with the Jones polynomial.
We study the thick subcategories of the stable category of finitely generated modules for the principal block of the group algebra of a finite group G over a field of characteristic p. In case G is a p-group we obtain a complete classification of the thick subcategories. The same classification works whenever the nucleus of the cohomology variety is zero. In case the nucleus is nonzero, we describe some examples which lead us to believe that there are always infinitely many thick subcategories concentrated...
Let ZA be the integral group ring of a finite abelian group A, and n a positive integer greater than 5. We provide conditions on n and A under which every torsion matrix U, with identity augmentation, in GLn(ZA) is conjugate in GLn(QA) to a diagonal matrix with group elements on the diagonal. When A is infinite, we show that under similar conditions, U has a group trace and is stably conjugate to such a diagonal matrix.
We investigate the Zassenhaus conjecture regarding rational conjugacy of torsion units in integral group rings for certain automorphism groups of simple groups. Recently, many new restrictions on partial augmentations for torsion units of integral group rings have improved the effectiveness of the Luther-Passi method for verifying the Zassenhaus conjecture for certain groups. We prove that the Zassenhaus conjecture is true for the automorphism group of the simple group . Additionally we prove that...
Let U(RG) be the unit group of the group ring RG. In this paper we study group rings RG whose support elements of every torsion unit are torsion, where R is either the ring of integers Z or a field K.