On central nilpotency in finite loops with nilpotent inner mapping groups
In this paper we consider finite loops whose inner mapping groups are nilpotent. We first consider the case where the inner mapping group of a loop is the direct product of a dihedral group of order and an abelian group. Our second result deals with the case where is a -loop and is a nilpotent group whose nonabelian Sylow subgroups satisfy a special condition. In both cases it turns out that is centrally nilpotent.