On the stability of subgroup actions on certain quasihomogeneous -varieties.
The main aim of this article is to examine infinite groups whose non-abelian subgroups are subnormal. In this sense we obtain here description of such locally finite groups and, as a consequence we show several results related to such groups.
A subgroup H of a group G is inert if |H: H ∩ H g| is finite for all g ∈ G and a group G is totally inert if every subgroup H of G is inert. We investigate the structure of minimal normal subgroups of totally inert groups and show that infinite locally graded simple groups cannot be totally inert.