Farrell cohomology and Brwon theorems for profinite groups.
Some lattice properties of FC-groups and generalized FC-groups are considered in this paper.
A group is said to be a -group if for every divisor of the order of , there exists a subgroup of of order such that is normal or abnormal in . We give a complete classification of those groups which are not -groups but all of whose proper subgroups are -groups.
Counting subgroups of finite groups is one of the most important topics in finite group theory. We classify the finite non-nilpotent groups whose set of numbers of subgroups of possible orders has exactly two elements. We show that if is a non-nilpotent group whose set of numbers of subgroups of possible orders has exactly 2 elements, then has a normal Sylow subgroup of prime order and is solvable. Moreover, as an application we give a detailed description of non-nilpotent groups with...
We describe finite groups which contain just one conjugate class of self-normalizing subgroups.
If X is a property or a class of groups, an automorphism ϕ of a group G is X-finitary if there is a normal subgroup N of G centralized by ϕ such that G/N is an X-group. Groups of such automorphisms for G a module over some ring have been very extensively studied over many years. However, for groups in general almost nothing seems to have been done. In 2009 V. V. Belyaev and D. A. Shved considered the general case for X the class of finite groups. Here we look further at the finite case but our main...
We study infinite finitely generated groups having a finite set of conjugacy classes meeting all cyclic subgroups. The results concern growth and the ascending chain condition for such groups.