Displaying 1081 – 1100 of 1792

Showing per page

Systolic invariants of groups and 2 -complexes via Grushko decomposition

Yuli B. Rudyak, Stéphane Sabourau (2008)

Annales de l’institut Fourier

We prove a finiteness result for the systolic area of groups. Namely, we show that there are only finitely many possible unfree factors of fundamental groups of  2 -complexes whose systolic area is uniformly bounded. We also show that the number of freely indecomposable such groups grows at least exponentially with the bound on the systolic area. Furthermore, we prove a uniform systolic inequality for all 2 -complexes with unfree fundamental group that improves the previously known bounds in this dimension....

The arithmetic of curves defined by iteration

Wade Hindes (2015)

Acta Arithmetica

We show how the size of the Galois groups of iterates of a quadratic polynomial f can be parametrized by certain rational points on the curves Cₙ: y² = fⁿ(x) and their quadratic twists (here fⁿ denotes the nth iterate of f). To that end, we study the arithmetic of such curves over global and finite fields, translating key problems in the arithmetic of polynomial iteration into a geometric framework. This point of view has several dynamical applications. For instance, we establish a maximality theorem...

Currently displaying 1081 – 1100 of 1792