Page 1 Next

Displaying 1 – 20 of 44

Showing per page

Finite-finitary, polycyclic-finitary and Chernikov-finitary automorphism groups

B. A. F. Wehrfritz (2015)

Colloquium Mathematicae

If X is a property or a class of groups, an automorphism ϕ of a group G is X-finitary if there is a normal subgroup N of G centralized by ϕ such that G/N is an X-group. Groups of such automorphisms for G a module over some ring have been very extensively studied over many years. However, for groups in general almost nothing seems to have been done. In 2009 V. V. Belyaev and D. A. Shved considered the general case for X the class of finite groups. Here we look further at the finite case but our main...

Groups satisfying the maximal condition on subnormal non-normal subgroups

Fausto De Mari, Francesco de Giovanni (2005)

Colloquium Mathematicae

The structure of (generalized) soluble groups for which the set of all subnormal non-normal subgroups satisfies the maximal condition is described, taking as a model the known theory of groups in which normality is a transitive relation.

Groups with every subgroup ascendant-by-finite

Sergio Camp-Mora (2013)

Open Mathematics

A subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.

Groups with metamodular subgroup lattice

M. De Falco, F. de Giovanni, C. Musella, R. Schmidt (2003)

Colloquium Mathematicae

A group G is called metamodular if for each subgroup H of G either the subgroup lattice 𝔏(H) is modular or H is a modular element of the lattice 𝔏(G). Metamodular groups appear as the natural lattice analogues of groups in which every non-abelian subgroup is normal; these latter groups have been studied by Romalis and Sesekin, and here their results are extended to metamodular groups.

Groups with the weak minimal condition for non-subnormal subgroups II

Leonid A. Kurdachenko, Howard Smith (2005)

Commentationes Mathematicae Universitatis Carolinae

Let G be a group with the property that there are no infinite descending chains of non-subnormal subgroups of G for which all successive indices are infinite. The main result is that if G is a locally (soluble-by-finite) group with this property then either G has all subgroups subnormal or G is a soluble-by-finite minimax group. This result fills a gap left in an earlier paper by the same authors on groups with the stated property.

Locally graded groups with certain minimal conditions for subgroups (II).

Javier Otal, Juan Manuel Peña (1988)

Publicacions Matemàtiques

This paper deals with one of the ways of studying infinite groups many of whose subgroups have a prescribed property, namely the consideration of minimal conditions. If P is a theoretical property of groups and subgroups, we show that a locally graded group P satisfies the minimal conditions for subgroups not having P if and only if either G is a Cernikov group or every subgroup of G satisfies P, for certain values of P concerning normality, nilpotency and related ideas.

Modularità nei gruppi non-periodici

Maria De Falco (2005)

Bollettino dell'Unione Matematica Italiana

In questo lavoro sono contenuti alcuni risultati riguardanti la struttura dei gruppi non-periodici in cui sottogruppi verificano opportune condizioni di modularità.

On Groups whose Contranormal Subgroups are Normally Complemented

Kurdachenko, L. A., Subbotin, I. Ya. (2011)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 20F16, 20E15.Groups in which every contranormal subgroup is normally complemented has been considered. The description of such groups G with the condition Max-n and such groups having an abelian nilpotent residual satisfying Min-G have been obtained.

On non-periodic groups whose finitely generated subgroups are either permutable or pronormal

L. A. Kurdachenko, I. Ya. Subbotin, T. I. Ermolkevich (2013)

Mathematica Bohemica

The current article considers some infinite groups whose finitely generated subgroups are either permutable or pronormal. A group G is called a generalized radical, if G has an ascending series whose factors are locally nilpotent or locally finite. The class of locally generalized radical groups is quite wide. For instance, it includes all locally finite, locally soluble, and almost locally soluble groups. The main result of this paper is the followingTheorem. Let G be a locally generalized radical...

Currently displaying 1 – 20 of 44

Page 1 Next