Displaying 21 – 40 of 50

Showing per page

General construction of non-dense disjoint iteration groups on the circle

Krzysztof Ciepliński (2005)

Czechoslovak Mathematical Journal

Let = { F v 𝕊 1 𝕊 1 , v V } be a disjoint iteration group on the unit circle 𝕊 1 , that is a family of homeomorphisms such that F v 1 F v 2 = F v 1 + v 2 for v 1 , v 2 V and each F v either is the identity mapping or has no fixed point ( ( V , + ) is a 2 -divisible nontrivial Abelian group). Denote by L the set of all cluster points of { F v ( z ) , v V } for z 𝕊 1 . In this paper we give a general construction of disjoint iteration groups for which L 𝕊 1 .

Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant

Gwénaël Massuyeau (2012)

Bulletin de la Société Mathématique de France

Let Σ be a compact connected oriented surface with one boundary component, and let π be the fundamental group of Σ . The Johnson filtration is a decreasing sequence of subgroups of the Torelli group of Σ , whose k -th term consists of the self-homeomorphisms of Σ that act trivially at the level of the k -th nilpotent quotient of π . Morita defined a homomorphism from the k -th term of the Johnson filtration to the third homology group of the k -th nilpotent quotient of π . In this paper, we replace groups...

Lifting of homeomorphisms to branched coverings of a disk

Bronisław Wajnryb, Agnieszka Wiśniowska-Wajnryb (2012)

Fundamenta Mathematicae

We consider a simple, possibly disconnected, d-sheeted branched covering π of a closed 2-dimensional disk D by a surface X. The isotopy classes of homeomorphisms of D which are pointwise fixed on the boundary of D and permute the branch values, form the braid group Bₙ, where n is the number of branch values. Some of these homeomorphisms can be lifted to homeomorphisms of X which fix pointwise the fiber over the base point. They form a subgroup L π of finite index in Bₙ. For each equivalence class...

Mapping class group of a handlebody

Bronisław Wajnryb (1998)

Fundamenta Mathematicae

Let B be a 3-dimensional handlebody of genus g. Let ℳ be the group of the isotopy classes of orientation preserving homeomorphisms of B. We construct a 2-dimensional simplicial complex X, connected and simply-connected, on which ℳ acts by simplicial transformations and has only a finite number of orbits. From this action we derive an explicit finite presentation of ℳ.

On the ideal triangulation graph of a punctured surface

Mustafa Korkmaz, Athanase Papadopoulos (2012)

Annales de l’institut Fourier

We study the ideal triangulation graph T ( S ) of an oriented punctured surface S of finite type. We show that if S is not the sphere with at most three punctures or the torus with one puncture, then the natural map from the extended mapping class group of S into the simplicial automorphism group of T ( S ) is an isomorphism. We also show that the graph T ( S ) of such a surface S , equipped with its natural simplicial metric is not Gromov hyperbolic. We also show that if the triangulation graph of two oriented punctured...

Currently displaying 21 – 40 of 50