Page 1

Displaying 1 – 7 of 7

Showing per page

Receding polar regions of a spherical building and the center conjecture

Bernhard Mühlherr, Richard M. Weiss (2013)

Annales de l’institut Fourier

We introduce the notion of a polar region of a spherical building and use some simple observations about polar regions to give elementary proofs of various fundamental properties of root groups. We combine some of these observations with results of Timmesfeld, Balser and Lytchak to give a new proof of the center conjecture for convex chamber subcomplexes of thick spherical buildings.

Réseaux de Coxeter-Davis et commensurateurs

Frédéric Haglund (1998)

Annales de l'institut Fourier

For each integer k 6 and each finite graph L , we construct a Coxeter group W and a non positively curved polygonal complex A on which W acts properly cocompactly, such that each polygon of A has k edges, and the link of each vertex of A is isomorphic to L . If L is a “generalized m -gon”, then A is a Tits building modelled on a reflection group of the hyperbolic plane. We give a condition on Aut ( L ) for Aut ( A ) to be non enumerable (which is satisfied if L is a thick classical generalized m -gon). On the other hand,...

Currently displaying 1 – 7 of 7

Page 1