Dynamics of out on the boundary of outer space
Numerical estimates are given for the spectral radius of simple random walks on Cayley graphs. Emphasis is on the case of the fundamental group of a closed surface, for the usual system of generators.
Dans cet article, on montre que l’espace des groupes marqués est un sous-espace fermé d’un ensemble de Cantor dont la dimension de Hausdorff est infinie. On prouve que la dimension de Minkowski de cet espace est infinie en exhibant des sous-ensembles de groupes marqués à petite simplification dont les dimensions de Minkowski sont arbitrairement grandes. On donne une estimation des dimensions de Minkowski de sous-espaces de groupes à un relateur. On démontre enfin que les dimensions de Minkowski...
Let be a fixed symmetric finite subset of that generates a Zariski dense subgroup of when we consider it as an algebraic group over by restriction of scalars. We prove that the Cayley graphs of with respect to the projections of is an expander family if ranges over square-free ideals of if and is an arbitrary numberfield, or if and .
Complexes of groups over ordered simplicial complexes are generalizations to higher dimensions of graphs of groups. We first relate them to complexes of spaces by considering their classifying space . Then we develop their homological algebra aspects. We define the notions of homology and cohomology of a complex of groups with coefficients in a -module and show the existence of free resolutions. We apply those notions to study extensions of complexes of groups with constant or abelian kernel....
On étudie la notion de finitude géométrique pour certaines géométries de Hilbert définies par un ouvert strictement convexe à bord de classe .La définition dans le cadre des espaces Gromov-hyperboliques fait intervenir l’action du groupe discret considéré sur le bord de l’espace. On montre, en construisant explicitement un contre-exemple, que cette définition doit être renforcée pour obtenir des définitions équivalentes en termes de la géométrie de l’orbifold quotient, similaires à celles obtenues...
In spaces of nonpositive curvature the existence of isometrically embedded flat (hyper)planes is often granted by apparently weaker conditions on large scales.We show that some such results remain valid for metric spaces with non-unique geodesic segments under suitable convexity assumptions on the distance function along distinguished geodesics. The discussion includes, among other things, the Flat Torus Theorem and Gromov’s hyperbolicity criterion referring to embedded planes. This generalizes...
The isoperimetric inequality |∂Ω| / |Ω| = constant / log |Ω| for finite subsets Ω in a finitely generated group Γ with exponential growth is optimal if Γ is polycyclic.
An explicit family of Folner sets is constructed for some directed groups acting on a rooted tree of sublogarithmic valency by alternate permutations. In the case of bounded valency, these groups were known to be amenable by probabilistic methods. The present construction provides a new and independent proof of amenability, using neither random walks, nor word length.
We prove the theorem in the title by constructing an action of a Coxeter group on a product of trees.