Page 1 Next

Displaying 1 – 20 of 51

Showing per page

Éléments réguliers et représentations de Gelfand-Graev des groupes réductifs non connexes

Karine Sorlin (2004)

Bulletin de la Société Mathématique de France

Soient G un groupe algébrique réductif connexe défini sur 𝔽 q et  F l’endomorphisme de Frobenius correspondant. Soit σ un automorphisme rationnel quasi-central de G . Nous construisons ci-dessous l’équivalent des représentations de Gelfand-Graev du groupe G ˜ F = G F · σ , lorsque σ est unipotent et lorsqu’il est semi-simple. Nous montrons de plus que ces représentations vérifient des propriétés semblables à celles vérifiées par les représentations de Gelfand-Graev dans le cas connexe en particulier par rapport aux...

Embeddings of maximal tori in orthogonal groups

Eva Bayer-Fluckiger (2014)

Annales de l’institut Fourier

We give necessary and sufficient conditions for an orthogonal group defined over a global field of characteristic 2 to contain a maximal torus of a given type.

Equations in simple matrix groups: algebra, geometry, arithmetic, dynamics

Tatiana Bandman, Shelly Garion, Boris Kunyavskiĭ (2014)

Open Mathematics

We present a survey of results on word equations in simple groups, as well as their analogues and generalizations, which were obtained over the past decade using various methods: group-theoretic and coming from algebraic and arithmetic geometry, number theory, dynamical systems and computer algebra. Our focus is on interrelations of these machineries which led to numerous spectacular achievements, including solutions of several long-standing problems.

Equations of some wonderful compactifications

Pascal Hivert (2011)

Annales de l’institut Fourier

De Concini and Procesi have defined the wonderful compactification X ¯ of a symmetric space X = G / G σ where G is a complex semisimple adjoint group and G σ the subgroup of fixed points of G by an involution σ . It is a closed subvariety of a Grassmannian of the Lie algebra 𝔤 of G . In this paper we prove that, when the rank of X is equal to the rank of G , the variety is defined by linear equations. The set of equations expresses the fact that the invariant alternate trilinear form w on 𝔤 vanishes on the ( - 1 ) -eigenspace...

Currently displaying 1 – 20 of 51

Page 1 Next