Page 1 Next

Displaying 1 – 20 of 101

Showing per page

S L 2 , the cubic and the quartic

Yannis Y. Papageorgiou (1998)

Annales de l'institut Fourier

We describe the branching rule from S p 4 to S L 2 , where the latter is embedded via its action on binary cubic forms. We obtain both a numerical multiplicity formula, as well as a minimal system of generators for the geometric realization of the rule.

Schémas en groupes et immeubles des groupes exceptionnels sur un corps local. Première partie : le groupe G 2

Wee Teck Gan, Jiu-Kang Yu (2003)

Bulletin de la Société Mathématique de France

Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les groupes exceptionnels de type G 2 sur un corps local. Nous décrivons chaque construction concrètement en termes de réseaux : l’immeuble, les appartements, la structure simpliciale, les schémas en groupes associés. Les appendices traitent de l’analogie avec les espaces symétriques réels et des espaces symétriques associés à G 2 réel et complexe.

Schémas en groupes et immeubles des groupes exceptionnels sur un corps local. Deuxième partie : les groupes F 4 et E 6

Wee Teck Gan, Jiu-Kang Yu (2005)

Bulletin de la Société Mathématique de France

Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les groupes exceptionnels des type F 4 ou E 6 sur un corps local. Nous décrivons chaque construction concrètement en termes de réseaux : l’immeuble, les appartements, la structure simpliciale, les schémas en groupes associés.

Currently displaying 1 – 20 of 101

Page 1 Next