Almost completely decomposable groups with primary cyclic regulating quotient
Suppose is a perfect field of and is an arbitrary abelian multiplicative group with a -basic subgroup and -component . Let be the group algebra with normed group of all units and its Sylow -subgroup , and let be the nilradical of the relative augmentation ideal of with respect to . The main results that motivate this article are that is basic in , and is -basic in provided is -mixed. These achievements extend in some way a result of N. Nachev (1996) in Houston...
A torsion-free group is a -group if and only if it has an axiom-3 family of decent subgroups such that each member of has such a family, too. Such a family is called -family. Further, a version of Shelah’s Singular Compactness having a rather simple proof is presented. As a consequence, a short proof of a result [R1] stating that a torsion-free group in a prebalanced and TEP exact sequence is a -group provided and are so.
An endomorphism f of an Abelian group A is said to be inessentia! (in the category of Abelian groups) if it can be extended to an endomorphism of any Abelian group which contains A as a subgroup. In this paper we show that f is as above if and only if (f - v idA)(A) is contained in the rnaximal divisible subgroup of A for some v belonging to Z.
A new class of abelian -groups with all high subgroups isomorphic is defined. Commutative modular and semisimple group algebras over such groups are examined. The results obtained continue our recent statements published in Comment. Math. Univ. Carolinae (2002).
An attractive interplay between the direct decompositions and the explicit form of basic subgroups in group rings of abelian groups over a commutative unitary ring are established. In particular, as a consequence, we give a simpler confirmation of a more general version of our recent result in this aspect published in Czechoslovak Math. J. (2006).