Displaying 21 – 40 of 84

Showing per page

On central nilpotency in finite loops with nilpotent inner mapping groups

Markku Niemenmaa, Miikka Rytty (2008)

Commentationes Mathematicae Universitatis Carolinae

In this paper we consider finite loops whose inner mapping groups are nilpotent. We first consider the case where the inner mapping group I ( Q ) of a loop Q is the direct product of a dihedral group of order 8 and an abelian group. Our second result deals with the case where Q is a 2 -loop and I ( Q ) is a nilpotent group whose nonabelian Sylow subgroups satisfy a special condition. In both cases it turns out that Q is centrally nilpotent.

On centrally nilpotent loops

L. V. Safonova, K. K. Shchukin (2000)

Commentationes Mathematicae Universitatis Carolinae

Using a lemma on subnormal subgroups, the problem of nilpotency of multiplication groups and inner permutation groups of centrally nilpotent loops is discussed.

On congruences and ideals of partially ordered quasigroups

Milan Demko (2008)

Czechoslovak Mathematical Journal

Some results concerning congruence relations on partially ordered quasigroups (especially, Riesz quasigroups) and ideals of partially ordered loops are presented. These results generalize the assertions which were proved by Fuchs in [5] for partially ordered groups and Riesz groups.

On dicyclic groups as inner mapping groups of finite loops

Emma Leppälä, Markku Niemenmaa (2016)

Commentationes Mathematicae Universitatis Carolinae

Let G be a finite group with a dicyclic subgroup H . We show that if there exist H -connected transversals in G , then G is a solvable group. We apply this result to loop theory and show that if the inner mapping group I ( Q ) of a finite loop Q is dicyclic, then Q is a solvable loop. We also discuss a more general solvability criterion in the case where I ( Q ) is a certain type of a direct product.

On Equational Theory of Left Divisible Left Distributive Groupoids

Přemysl Jedlička (2012)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

It is an open question whether the variety generated by the left divisible left distributive groupoids coincides with the variety generated by the left distributive left quasigroups. In this paper we prove that every left divisible left distributive groupoid with the mapping a a 2 surjective lies in the variety generated by the left distributive left quasigroups.

On finite commutative loops which are centrally nilpotent

Emma Leppälä, Markku Niemenmaa (2015)

Commentationes Mathematicae Universitatis Carolinae

Let Q be a finite commutative loop and let the inner mapping group I ( Q ) C p n × C p n , where p is an odd prime number and n 1 . We show that Q is centrally nilpotent of class two.

On finite loops and their inner mapping groups

Markku Niemenmaa (2004)

Commentationes Mathematicae Universitatis Carolinae

In this paper we consider finite loops and discuss the following problem: Which groups are (are not) isomorphic to inner mapping groups of loops? We recall some known results on this problem and as a new result we show that direct products of dihedral 2-groups and nontrivial cyclic groups of odd order are not isomorphic to inner mapping groups of finite loops.

On loops that are abelian groups over the nucleus and Buchsteiner loops

Piroska Csörgö (2008)

Commentationes Mathematicae Universitatis Carolinae

We give sufficient and in some cases necessary conditions for the conjugacy closedness of Q / Z ( Q ) provided the commutativity of Q / N . We show that if for some loop Q , Q / N and Inn Q are abelian groups, then Q / Z ( Q ) is a CC loop, consequently Q has nilpotency class at most three. We give additionally some reasonable conditions which imply the nilpotency of the multiplication group of class at most three. We describe the structure of Buchsteiner loops with abelian inner mapping groups.

On loops whose inner permutations commute

Piroska Csörgö, Tomáš Kepka (2004)

Commentationes Mathematicae Universitatis Carolinae

Multiplication groups of (finite) loops with commuting inner permutations are investigated. Special attention is paid to the normal closure of the abelian permutation group.

Currently displaying 21 – 40 of 84