Determinant functions and the geometry of the flag manifold for SU(p,q).
On obtient ici le développement asymptotique, en temps petit et sur la diagonale, du noyau de la chaleur associé à un opérateur dégénéré du second ordre satisfaisant à la condition forte d’hypoellipticité de Hörmander.
A Carnot group G is a connected, simply connected, nilpotent Lie group with stratified Lie algebra. We study intrinsic Lipschitz graphs and intrinsic differentiable graphs within Carnot groups. Both seem to be the natural analogues inside Carnot groups of the corresponding Euclidean notions. Here ‘natural’ is meant to stress that the intrinsic notions depend only on the structure of the algebra of G. We prove that one codimensional intrinsic Lipschitz graphs are sets with locally finite G-perimeter....
In the geometries of stratified groups, we provide differentiability theorems for both functions of bounded variation and Sobolev functions. Proofs are based on a systematic application of the Sobolev-Poincaré inequality and the so-called representation formula.