-cohomology of locally symmetric varieties
We investigate free groups over sequential spaces. In particular, we show that the free -group and the free sequential group over a sequential space with unique limits coincide and, barred the trivial case, their sequential order is .
We consider a family of non-unimodular rank one NA-groups with roots not all positive, and we show that on these groups there exists a distinguished left invariant sub-Laplacian which admits a differentiable functional calculus for every p ≥ 1.
Let be a symmetric space of the noncompact type, with Laplace–Beltrami operator , and let be the -spectrum of . For in such that , let be the operator on defined formally as . In this paper, we obtain operator norm estimates for for all , and show that these are optimal when is small and when is bounded below .
Nous établissons la formule des traces invariante à la Arthur pour les revêtements adéliques des groupes réductifs connexes sur un corps de nombres, sous l’hypothèse que le Théorème de Paley-Wiener invariant soit vérifié pour tout sous-groupe de Lévi en les places archimédiennes réelles. Cette hypothèse est vérifiée pour les revêtements métaplectiques de et ceux de à deux feuillets, par exemple. La démonstration est basée sur les articles antérieurs et sur les idées d’Arthur. Nous donnons également...