Page 1 Next

Displaying 1 – 20 of 121

Showing per page

D sets and IP rich sets in ℤ

Randall McCutcheon, Jee Zhou (2016)

Fundamenta Mathematicae

We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in ℤ. We then show that the family of IP rich sets strictly contains the family of D sets.

Davenport-Hasse relations and an explicit Langlands correspondence, II : twisting conjectures

Colin J. Bushnell, Guy Henniart (2000)

Journal de théorie des nombres de Bordeaux

Let F / p be a finite field extension. The Langlands correspondence gives a canonical bijection between the set 𝒢 F 0 ( n ) of equivalence classes of irreducible n -dimensional representations of the Weil group 𝒲 F of F and the set 𝒜 F 0 ( n ) of equivalence classes of irreducible supercuspidal representations of GL n ( F ) . This paper is concerned with the case where n = p m . In earlier work, the authors constructed an explicit bijection π : 𝒢 F 0 ( p m ) 𝒜 F 0 ( p m ) using a non-Galois tame base change map. If this tame base change satisfies a certain conjectured...

De quelques aspects de la théorie des Q -variétés différentielles et analytiques

Raymond Barre (1973)

Annales de l'institut Fourier

Une Q -variété est le quotient d’une variété par une relation d’équivalence “étale” (feuilletage sans holonomie transversale). Cette catégorie est stable par quotients “étales”, et contient tout quotient d’une Q -variété en groupe par un sous-groupe. Elle forme le meilleur cadre possible pour l’étude des groupes de Lie. Une construction explicite de la cohomologie permettra d’obtenir la suite spectrale de Leray d’un morphisme de Q -variétés, celle des espaces à opérateurs, d’où leur interprétation...

Deformation on phase space.

Oscar Arratia, M.ª Angeles Martín Mínguez, María Angeles del Olmo (2002)

RACSAM

El trabajo que presentamos constituye una revisión de varios procedimientos de cuantización basados en un espacio de fases clásico M. Estos métodos consideran a la mecánica cuántica como una "deformación" de la mecánica clásica por medio de la "transformación" del álgebra conmutativa C∞(M) en una nueva álgebra no conmutativa C∞(M)ħ. Todas estas ideas conducen de modo natural a los grupos cuánticos como deformación (o cuantización en un sentido amplio) de los grupos de Poisson-Lie, lo cual también...

Currently displaying 1 – 20 of 121

Page 1 Next