Metrics in locally compact groups
According to Comfort, Raczkowski and Trigos-Arrieta, a dense subgroup D of a compact abelian group G determines G if the restriction homomorphism Ĝ → D̂ of the dual groups is a topological isomorphism. We introduce four conditions on D that are necessary for it to determine G and we resolve the following question: If one of these conditions holds for every dense (or -dense) subgroup D of G, must G be metrizable? In particular, we prove (in ZFC) that a compact abelian group determined by all its...
Let X be a closed manifold of dimension 2 or higher or the Hilbert cube. Following Uspenskij one can consider the action of Homeo(X) equipped with the compact-open topology on , the space of maximal chains in , equipped with the Vietoris topology. We show that if one restricts the action to M ⊂ Φ, the space of maximal chains of continua, then the action is minimal but not transitive. Thus one shows that the action of Homeo(X) on , the universal minimal space of Homeo(X), is not transitive (improving...