Models of quadratic algebras generated by superintegrable systems in 2D.
We prove a rigidity theorem for semiarithmetic Fuchsian groups: If Γ₁, Γ₂ are two semiarithmetic lattices in PSL(2,ℝ ) virtually admitting modular embeddings, and f: Γ₁ → Γ₂ is a group isomorphism that respects the notion of congruence subgroups, then f is induced by an inner automorphism of PGL(2,ℝ ).
We study locally compact quantum groups and their module maps through a general Banach algebra approach. As applications, we obtain various characterizations of compactness and discreteness, which in particular generalize a result by Lau (1978) and recover another one by Runde (2008). Properties of module maps on are used to characterize strong Arens irregularity of L₁() and are linked to commutation relations over with several double commutant theorems established. We prove the quantum group...
Let G be a split semisimple algebraic group over Q with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(R), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely...