Algèbres de Fourier associées à une algèbre de Kac.
Let and be groups and let be an extension of by . Given a property of group compactifications, one can ask whether there exist compactifications and of and such that the universal -compactification of is canonically isomorphic to an extension of by . We prove a theorem which gives necessary and sufficient conditions for this to occur for general properties and then apply this result to the almost periodic and weakly almost periodic compactifications of .
We give a complete characterization of the locally compact groups that are non elementary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or continuous one-parameter groups of compacting automorphisms. We moreover give a description of all Gromov-hyperbolic locally compact groups with a cocompact amenable subgroup: modulo a compact normal subgroup, these turn out to be either rank one simple Lie groups, or automorphism groups of semiregular trees acting doubly...
Let be a free group on generators. We construct the series of uniformly bounded representations of acting on the common Hilbert space, depending analytically on the complex parameter z, , such that each representation is irreducible. If is real or then is unitary; in other cases cannot be made unitary. For representations and are congruent modulo compact operators.
There is constructed a compactly generated, separable, locally compact group G and a continuous irreducible unitary representation π of G such that the image π(C*(G)) of the group C*-algebra contains the algebra of compact operators, while the image of the -group algebra does not containany nonzero compact operator. The group G is a semidirect product of a metabelian discrete group and a “generalized Heisenberg group”.
We classify the hulls of different limit-periodic potentials and show that the hull of a limit-periodic potential is a procyclic group. We describe how limit-periodic potentials can be generated from a procyclic group and answer arising questions. As an expository paper, we discuss the connection between limit-periodic potentials and profinite groups as completely as possible and review some recent results on Schrödinger operators obtained in this...
We study the relationship between the classical invariance properties of amenable locally compact groups G and the approximate diagonals possessed by their associated group algebras L¹(G). From the existence of a weak form of approximate diagonal for L¹(G) we provide a direct proof that G is amenable. Conversely, we give a formula for constructing a strong form of approximate diagonal for any amenable locally compact group. In particular we have a new proof of Johnson's Theorem: A locally compact...