Displaying 41 – 60 of 85

Showing per page

Lie group structures and reproducing kernels on the unit ball of n

Umberto Sampieri (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si introducono due strutture di gruppo di Lie su un dominio di Siegel omogeneo di n . Per la palla unitaria si definisce una famiglia ad un parametro di strutture intermedie; ad ognuna di esse viene associato naturalmente un nucleo riproducente ottenendo un'interpolazione tra il nucleo di Bergman ed il nucleo di Szego.

On the complex and convex geometry of Ol'shanskii semigroups

Karl-Hermann Neeb (1998)

Annales de l'institut Fourier

To a pair of a Lie group G and an open elliptic convex cone W in its Lie algebra one associates a complex semigroup S = G Exp ( i W ) which permits an action of G × G by biholomorphic mappings. In the case where W is a vector space S is a complex reductive group. In this paper we show that such semigroups are always Stein manifolds, that a biinvariant domain D S is Stein is and only if it is of the form G Exp ( D h ) , with D h i W convex, that each holomorphic function on D extends to the smallest biinvariant Stein domain containing D ,...

On the complex geometry of invariant domains in complexified symmetric spaces

Karl-Hermann Neeb (1999)

Annales de l'institut Fourier

Let M = G / H be a real symmetric space and 𝔤 = 𝔥 + 𝔮 the corresponding decomposition of the Lie algebra. To each open H -invariant domain D 𝔮 i 𝔮 consisting of real ad-diagonalizable elements, we associate a complex manifold Ξ ( D 𝔮 ) which is a curved analog of a tube domain with base D 𝔮 , and we have a natural action of G by holomorphic mappings. We show that Ξ ( D 𝔮 ) is a Stein manifold if and only if D 𝔮 is convex, that the envelope of holomorphy is schlicht and that G -invariant plurisubharmonic functions correspond to convex H -invariant...

Currently displaying 41 – 60 of 85