Représentation de Weil et changement de base quadratique dans le cas archimédien. II
Soit une distribution dissipative sur un groupe de Lie et soit une représentation fortement continue de dans un espace de Banach. Supposons à support compact. Il y a deux façons évidentes de définir un opérateur fermé : une faible et une forte. Le résultat principal de cet article est que l’on obtient le même résultat et que engendre un semi-groupe fortement continu d’opérateurs.