Symmetry of the barochronous motions of a gas.
We show that the Lorentz and the SU(3) groups can be derived from the covariance principle conserving a Z₃-graded three-form on a Z₃-graded cubic algebra representing quarks endowed with non-standard commutation laws. The ternary commutation relations on an algebra generated by two elements lead to cubic combinations of three quarks or antiquarks that transform as Lorentz spinors, and binary quark-anti-quark combinations that transform as Lorentz vectors.
Let denote generic binary forms, and let denote their -th transvectant in the sense of classical invariant theory. In this paper we classify all the quadratic syzygies between the . As a consequence, we show that each of the higher transvectants is redundant in the sense that it can be completely recovered from and . This result can be geometrically interpreted in terms of the incomplete Segre imbedding. The calculations rely upon the Cauchy exact sequence of -representations, and the...
Let be the semidirect product where is a semisimple compact connected Lie group acting linearly on a finite-dimensional real vector space . Let be a coadjoint orbit of associated by the Kirillov-Kostant method of orbits with a unitary irreducible representation of . We consider the case when the corresponding little group is the centralizer of a torus of . By dequantizing a suitable realization of on a Hilbert space of functions on where , we construct a symplectomorphism between...