Displaying 21 – 40 of 471

Showing per page

Semicontinuity in L for polyconvex integrals

Emilio Acerbi, Giuseppe Buttazzo, Nicola Fusco (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Viene studiata la semicontinuità rispetto alla topologia di L ( Ω ; 𝐑 m ) per alcuni funzionali del Calcolo delle Variazioni dipendenti da funzioni a valori vettoriali.

Semicopulæ

Fabrizio Durante, Carlo Sempi (2005)

Kybernetika

We define the notion of semicopula, a concept that has already appeared in the statistical literature and study the properties of semicopulas and the connexion of this notion with those of copula, quasi-copula, t -norm.

Semicopulas: characterizations and applicability

Fabrizio Durante, José Quesada-Molina, Carlo Sempi (2006)

Kybernetika

We characterize some bivariate semicopulas and, among them, the semicopulas satisfying a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows us to introduce a new concept of depedence between two random variables. The notion of multivariate semicopula is given and two applications in the theory of fuzzy measures and stochastic processes are given.

Separating sets by Darboux-like functions

Aleksander Maliszewski (2002)

Fundamenta Mathematicae

We consider the following problem: Characterize the pairs ⟨A,B⟩ of subsets of ℝ which can be separated by a function from a given class, i.e., for which there exists a function f from that class such that f = 0 on A and f = 1 on B (the classical separation property) or f < 0 on A and f > 0 on B (a new separation property).

Currently displaying 21 – 40 of 471