Displaying 521 – 540 of 4583

Showing per page

An analysis of the Rüschendorf transform - with a view towards Sklar’s Theorem

Frank Oertel (2015)

Dependence Modeling

We revisit Sklar’s Theorem and give another proof, primarily based on the use of right quantile functions. To this end we slightly generalise the distributional transform approach of Rüschendorf and facilitate some new results including a rigorous characterisation of an almost surely existing “left-invertibility” of distribution functions.

An analysis of the stability boundary for a linear fractional difference system

Tomáš Kisela (2015)

Mathematica Bohemica

This paper deals with basic stability properties of a two-term linear autonomous fractional difference system involving the Riemann-Liouville difference. In particular, we focus on the case when eigenvalues of the system matrix lie on a boundary curve separating asymptotic stability and unstability regions. This issue was posed as an open problem in the paper J. Čermák, T. Kisela, and L. Nechvátal (2013). Thus, the paper completes the stability analysis of the corresponding fractional difference...

An approximation theorem for sequences of linear strains and its applications

Kewei Zhang (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in L 1 by the sequence of linear strains of mapping bounded in Sobolev space W 1 , p . We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.

An approximation theorem for sequences of linear strains and its applications

Kewei Zhang (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in L1 by the sequence of linear strains of mapping bounded in Sobolev space W1,p . We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.

An axiomatic theory of non-absolutely convergent integrals in Rn

W. Jurkat, D. Nonnenmacher (1994)

Fundamenta Mathematicae

We introduce an axiomatic approach to the theory of non-absolutely convergent integrals. The definition of our ν-integral will be descriptive and depends mainly on characteristic null conditions. By specializing our concepts we will later obtain concrete theories of integration with natural properties and very general versions of the divergence theorem.

Currently displaying 521 – 540 of 4583