An analytic representation for selfmaps of a countably infinite set and its cycles. (Short Communication).
We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in by the sequence of linear strains of mapping bounded in Sobolev space . We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.
We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in L1 by the sequence of linear strains of mapping bounded in Sobolev space W1,p . We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.
We introduce an axiomatic approach to the theory of non-absolutely convergent integrals. The definition of our ν-integral will be descriptive and depends mainly on characteristic null conditions. By specializing our concepts we will later obtain concrete theories of integration with natural properties and very general versions of the divergence theorem.