An Integral Inequality Similar to Bellman-Bihari inequality
We consider the eigenvalue problem for the p(x)-Laplace-Beltrami operator on the unit sphere. We prove same integro-differential inequalities related to the smallest positive eigenvalue of this problem.
The main observation of this note is that the Lebesgue measure μ in the Turán-Nazarov inequality for exponential polynomials can be replaced with a certain geometric invariant ω ≥ μ, which can be effectively estimated in terms of the metric entropy of a set, and may be nonzero for discrete and even finite sets. While the frequencies (the imaginary parts of the exponents) do not enter the original Turán-Nazarov inequality, they necessarily enter the definition of ω.
We present an example of an o-minimal structure which does not admit cellular decomposition. To this end, we construct a function whose germ at the origin admits a representative for each integer , but no representative. A number theoretic condition on the coefficients of the Taylor series of then insures the quasianalyticity of some differential algebras induced by . The o-minimality of the structure generated by is deduced from this quasianalyticity property.
A Haar wavelet operational matrix is applied to fractional integration, which has not been undertaken before. The Haar wavelet approximating method is used to reduce the fractional Volterra and Abel integral equations to a system of algebraic equations. A global error bound is estimated and some numerical examples with smooth, nonsmooth, and singular solutions are considered to demonstrate the validity and applicability of the developed method.