An two-well Liouville theorem.
The main observation of this note is that the Lebesgue measure μ in the Turán-Nazarov inequality for exponential polynomials can be replaced with a certain geometric invariant ω ≥ μ, which can be effectively estimated in terms of the metric entropy of a set, and may be nonzero for discrete and even finite sets. While the frequencies (the imaginary parts of the exponents) do not enter the original Turán-Nazarov inequality, they necessarily enter the definition of ω.
We present an example of an o-minimal structure which does not admit cellular decomposition. To this end, we construct a function whose germ at the origin admits a representative for each integer , but no representative. A number theoretic condition on the coefficients of the Taylor series of then insures the quasianalyticity of some differential algebras induced by . The o-minimality of the structure generated by is deduced from this quasianalyticity property.
A Haar wavelet operational matrix is applied to fractional integration, which has not been undertaken before. The Haar wavelet approximating method is used to reduce the fractional Volterra and Abel integral equations to a system of algebraic equations. A global error bound is estimated and some numerical examples with smooth, nonsmooth, and singular solutions are considered to demonstrate the validity and applicability of the developed method.
In this paper we point out an Ostrowski type inequality for convex functions which complement in a sense the recent results for functions of bounded variation and absolutely continuous functions. Applications in connection with the Hermite-Hadamard inequality are also considered.
Se exponen las estimaciones numéricas preliminares de las singularidades de una ecuación diferencial fraccionaria no lineal. Dicha ecuación aparece en el estudio de las ondas viajeras asociadas a una ecuación de ondas que es una interpolación entre la ecuación de ondas clásica y la ecuación de Benjamin-Ono.
En dimension 1 on analyse la fonction irrégulière (p entier ≥ 2) en un point de dérivabilité (π est un tel point) et on démontre que le terme d’erreur est un chirp de classe (1 + 1/(2p-2), 1/(p-1), (p-1)/p). La fonction r(x) est dans l’espace 2-microlocal si et seulement si s+s’ ≤ 1 - 1/p et ps+s’≤ p - 1/2. En dimension 2, on obtient en (π,π) l’existence d’un plan tangent pour la surface dès que γ>1.
Soit un espace de Banach de dual topologique . (resp. ) désigne l’ensemble des parties non vides convexes fermées de (resp. -fermées de ) muni de la topologie de la convergence uniforme sur les bornés des fonctions distances. Cette topologie se réduit à celle de la métrique de Hausdorff sur les convexes fermés bornés [16] et admet en général une représentation en terme de cette dernière [11]. De plus, la métrique qui lui est associée s’est révélée très adéquate pour l’étude quantitative...
Let X be a Banach space and X' its continuous dual. C(X) (resp. C(X')) denotes the set of nonempty convex closed subsets of X (resp. ω*-closed subsets of X') endowed with the topology of uniform convergence of distance functions on bounded sets. This topology reduces to the Hausdorff metric topology on the closed and bounded convex sets [16] and in general has a Hausdorff-like presentation [11]. Moreover, this topology is well suited for estimations and constructive approximations [6-9]. We...
We generalize to the non-separable context a theorem of Levi characterizing Baire analytic spaces. This allows us to prove a joint-continuity result for non-separable normed groups, previously known only in the separable context.
A real function is -density continuous if it is continuous with the -density topology on both the domain and the range. If is analytic, then is -density continuous. There exists a function which is both and convex which is not -density continuous.
A detailed study of power series on the Levi-Civita fields is presented. After reviewing two types of convergence on those fields, including convergence criteria for power series, we study some analytical properties of power series. We show that within their domain of convergence, power series are infinitely often differentiable and re-expandable around any point within the radius of convergence from the origin. Then we study a large class of functions that are given locally by power series and...