Bemerkung über gleichmässige Stetigkeit
We consider real valued functions defined on a subinterval of the positive real axis and prove that if all of ’s quantum differences are nonnegative then has a power series representation on . Further, if the quantum differences have fixed sign on then is analytic on .
Let be a self-similar set with similarities ratio and Hausdorff dimension , let be a probability vector. The Besicovitch-type subset of is defined aswhere is the indicator function of the set . Let and be a gauge function, then we prove in this paper:(i) If , thenmoreover both of and are finite positive;(ii) If is a positive probability vector other than , then the gauge functions can be partitioned as follows
Mathematics Subject Classification: 26D10.The sharp constant is obtained for the Hardy-Stein-Weiss inequality for fractional Riesz potential operator in the space L^p(R^n, ρ) with the power weight ρ = |x|^β. As a corollary, the sharp constant is found for a similar weighted inequality for fractional powers of the Beltrami-Laplace operator on the unit sphere.