About the Maximum and the Minimum of Darboux Functions
We investigate the order of magnitude of the modulus of continuity of a function f with absolutely convergent Fourier series. We give sufficient conditions in terms of the Fourier coefficients in order that f belong to one of the generalized Lipschitz classes Lip(α,L) and Lip(α,1/L), where 0 ≤ α ≤ 1 and L = L(x) is a positive, nondecreasing, slowly varying function such that L(x) → ∞ as x → ∞. For example, a 2π-periodic function f is said to belong to the class Lip(α,L) if for all x ∈ , h >...
We give an abstract version of Sierpiński's theorem which says that the closure in the uniform convergence topology of the algebra spanned by the sums of lower and upper semicontinuous functions is the class of all Baire 1 functions. Later we show that a natural generalization of Sierpiński's result for the uniform closure of the space of all sums of A and CA functions is not true. Namely we show that the uniform closure of the space of all sums of A and CA functions is a proper subclass of the...
En dimension 1 on analyse la fonction irrégulière (p entier ≥ 2) en un point de dérivabilité (π est un tel point) et on démontre que le terme d’erreur est un chirp de classe (1 + 1/(2p-2), 1/(p-1), (p-1)/p). La fonction r(x) est dans l’espace 2-microlocal si et seulement si s+s’ ≤ 1 - 1/p et ps+s’≤ p - 1/2. En dimension 2, on obtient en (π,π) l’existence d’un plan tangent pour la surface dès que γ>1.
In this article we give descriptions of some economic models that are based on Arrow-Hahn economic model. Finally we consider a model with two major assumptions: first, there is discontinuous excess demand function and, second, if price goes to zero, then it is possible that excess demand may approach infinity. For this last new economic model the existence of quasi-equilibrium is proved.
The goal of this paper is to characterize the family of averages of comparable (Darboux) quasi-continuous functions.