Displaying 161 – 180 of 235

Showing per page

On some properties of Hamel bases and their applications to Marczewski measurable functions

François Dorais, Rafał Filipów, Tomasz Natkaniec (2013)

Open Mathematics

We introduce new properties of Hamel bases. We show that it is consistent with ZFC that such Hamel bases exist. Under the assumption that there exists a Hamel basis with one of these properties we construct a discontinuous and additive function that is Marczewski measurable. Moreover, we show that such a function can additionally have the intermediate value property (and even be an extendable function). Finally, we examine sums and limits of such functions.

On the Moser-Onofri and Prékopa-Leindler inequalities.

Alessandro Ghigi (2005)

Collectanea Mathematica

Using elementary convexity arguments involving the Legendre transformation and the Prékopa-Leindler inequality, we prove the sharp Moser-Onofri inequality, which says that1/16π ∫|∇φ|2 + 1/4π ∫ φ - log (1/4π ∫ eφ) ≥ 0for any funcion φ ∈ C∞(S2).

On the reduction of pairs of bounded closed convex sets

J. Grzybowski, D. Pallaschke, R. Urbański (2008)

Studia Mathematica

Let X be a Hausdorff topological vector space. For nonempty bounded closed convex sets A,B,C,D ⊂ X we denote by A ∔ B the closure of the algebraic sum A + B, and call the pairs (A,B) and (C,D) equivalent if A ∔ D = B ∔ C. We prove two main theorems on reduction of equivalent pairs. The first theorem implies that, in a finite-dimensional space, a pair of nonempty compact convex sets with a piecewise smooth boundary and parallel tangent spaces at some boundary points is not minimal. The second theorem...

Currently displaying 161 – 180 of 235