On quasi-continuous bijections.
Results of Jan Marik on the theory of derivatives of real functions are described.
Let T 1 and T 2 be topologies defined on the same set X and let us say that (X, T 1) and (X, T 2) are similar if the families of sets which have nonempty interior with respect to T 1 and T 2 coincide. The aim of the paper is to study how similar topologies are related with each other.
We introduce Sobolev spaces for 1 < p < ∞ and small positive α on spaces of homogeneous type as the classes of functions f in with fractional derivative of order α, , as introduced in [2], in . We show that for small α, coincides with the continuous version of the Triebel-Lizorkin space as defined by Y. S. Han and E. T. Sawyer in [4]. To prove this result we give a more general definition of ε-families of operators on spaces of homogeneous type, in which the identity operator is...