On the existence of functions with perfect level sets.
We study set-valued mappings of bounded variation of one real variable. First we prove the existence of an extension of a metric space valued mapping from a subset of the reals to the whole set of reals with preservation of properties of the initial mapping: total variation, Lipschitz constant or absolute continuity. Then we show that a set-valued mapping of bounded variation defined on an arbitrary subset of the reals admits a regular selection of bounded variation. We introduce a notion of generated...
Let and be closed subsets of [0,1] with a subset of the limit points of . Necessary and sufficient conditions are found for the existence of a continuous function such that is an -limit set for and is the set of fixed points of in .
2000 Mathematics Subject Classification: 26A33, 33C20This paper is devoted to further development of important case of Wright’s hypergeometric function and its applications to the generalization of Γ-, B-, ψ-, ζ-, Volterra functions.
The main goal of this paper is to characterize the family of all functions f which satisfy the following condition: whenever g is a Darboux function and f < g on ℝ there is a Darboux function h such that f < h < g on ℝ.