Convergence theorems for the PU-integral
We give a definition of uniform PU-integrability for a sequence of -measurable real functions defined on an abstract metric space and prove that it is not equivalent to the uniform -integrability.
We give a definition of uniform PU-integrability for a sequence of -measurable real functions defined on an abstract metric space and prove that it is not equivalent to the uniform -integrability.
A closed epigraph theorem for Jensen-convex mappings with values in Banach lattices with a strong unit is established. This allows one to reduce the examination of continuity of vector valued transformations to the case of convex real functionals. In particular, it is shown that a weakly continuous Jensen-convex mapping is continuous. A number of corollaries follow; among them, a characterization of continuous vector-valued convex transformations is given that answers a question raised by Ih-Ching...
We give a review of results proved and published mostly in recent years, concerning real-valued convex functions as well as almost convex functions defined on a (not necessarily convex) subset of a group. Analogues of such classical results as the theorems of Jensen, Bernstein-Doetsch, Blumberg-Sierpiński, Ostrowski, and Mehdi are presented. A version of the Hahn-Banach theorem with a convex control function is proved, too. We also study some questions specific for the group setting, for instance...
Let a and b be fixed real numbers such that 0 < mina,b < 1 < a + b. We prove that every function f:(0,∞) → ℝ satisfying f(as + bt) ≤ af(s) + bf(t), s,t > 0, and such that must be of the form f(t) = f(1)t, t > 0. This improves an earlier result in [5] where, in particular, f is assumed to be nonnegative. Some generalizations for functions defined on cones in linear spaces are given. We apply these results to give a new characterization of the -norm.
Mathematics Subject Classification: 43A20, 26A33 (main), 44A10, 44A15We prove equalities in the Banach algebra L1(R+). We apply them to integral transforms and fractional calculus.* Partially supported by Project BFM2001-1793 of the MCYT-DGI and FEDER and Project E-12/25 of D.G.A.
We formulate a Covering Property Axiom , which holds in the iterated perfect set model, and show that it implies easily the following facts. (a) For every S ⊂ ℝ of cardinality continuum there exists a uniformly continuous function g: ℝ → ℝ with g[S] = [0,1]. (b) If S ⊂ ℝ is either perfectly meager or universally null then S has cardinality less than . (c) cof() = ω₁ < , i.e., the cofinality of the measure ideal is ω₁. (d) For every uniformly bounded sequence of Borel functions there are sequences:...
Pour trois fonctions non-négatives intégrables sur , et , telles que , Borelll a établi l’inégalité . Nous déterminons les conditions précises où l’inégalité sera stricte. La clef de cette analyse est une nouvelle caractérisation des fonctions convexes mesurables.