Displaying 501 – 520 of 2145

Showing per page

Differences of two semiconvex functions on the real line

Václav Kryštof, Luděk Zajíček (2016)

Commentationes Mathematicae Universitatis Carolinae

It is proved that real functions on which can be represented as the difference of two semiconvex functions with a general modulus (or of two lower C 1 -functions, or of two strongly paraconvex functions) coincide with semismooth functions on (i.e. those locally Lipschitz functions on for which f + ' ( x ) = lim t x + f + ' ( t ) and f - ' ( x ) = lim t x - f - ' ( t ) for each x ). Further, for each modulus ω , we characterize the class D S C ω of functions on which can be written as f = g - h , where g and h are semiconvex with modulus C ω (for some C > 0 ) using a new notion of...

Differentiability of Polynomials over Reals

Artur Korniłowicz (2017)

Formalized Mathematics

In this article, we formalize in the Mizar system [3] the notion of the derivative of polynomials over the field of real numbers [4]. To define it, we use the derivative of functions between reals and reals [9].

Differential inclusions and multivalued integrals

Kinga Cichoń, Mieczysław Cichoń, Bianca Satco (2013)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we consider the nonlocal (nonstandard) Cauchy problem for differential inclusions in Banach spaces x'(t) ∈ F(t,x(t)), x(0)=g(x), t ∈ [0,T] = I. Investigation over some multivalued integrals allow us to prove the existence of solutions for considered problem. We concentrate on the problems for which the assumptions are expressed in terms of the weak topology in a Banach space. We recall and improve earlier papers of this type. The paper is complemented...

Differentiation of n-convex functions

H. Fejzić, R. E. Svetic, C. E. Weil (2010)

Fundamenta Mathematicae

The main result of this paper is that if f is n-convex on a measurable subset E of ℝ, then f is n-2 times differentiable, n-2 times Peano differentiable and the corresponding derivatives are equal, and f ( n - 1 ) = f ( n - 1 ) except on a countable set. Moreover f ( n - 1 ) is approximately differentiable with approximate derivative equal to the nth approximate Peano derivative of f almost everywhere.

Currently displaying 501 – 520 of 2145