Boundedness of the Weyl fractional integral on one-sided weighted Lebesgue and Lipschitz spaces.
The main purpose of this paper is to investigate the behavior of fractional integral operators associated to a measure on a metric space satisfying just a mild growth condition, namely that the measure of each ball is controlled by a fixed power of its radius. This allows, in particular, non-doubling measures. It turns out that this condition is enough to build up a theory that contains the classical results based upon the Lebesgue measure on Euclidean space and their known extensions for doubling...