Displaying 741 – 760 of 2145

Showing per page

Hereditarily Hurewicz spaces and Arhangel'skii sheaf amalgamations

Boaz Tsaban, Lubomyr Zdomsky (2012)

Journal of the European Mathematical Society

A classical theorem of Hurewicz characterizes spaces with the Hurewicz covering property as those having bounded continuous images in the Baire space. We give a similar characterization for spaces X which have the Hurewicz property hereditarily. We proceed to consider the class of Arhangel’skii α 1 spaces, for which every sheaf at a point can be amalgamated in a natural way. Let C p ( X ) denote the space of continuous real-valued functions on X with the topology of pointwise convergence. Our main result...

Hölder functions in Bergman type spaces

Yingwei Chen, Guangbin Ren (2012)

Studia Mathematica

It seems impossible to extend the boundary value theory of Hardy spaces to Bergman spaces since there is no boundary value for a function in a Bergman space in general. In this article we provide a new idea to show what is the correct version of Bergman spaces by demonstrating the extension to Bergman spaces of a result of Hardy-Littlewood in Hardy spaces, which characterizes the Hölder class of boundary values for a function from Hardy spaces in the unit disc in terms of the growth of its derivative....

How smooth is almost every function in a Sobolev space?

Aurélia Fraysse, Stéphane Jaffard (2006)

Revista Matemática Iberoamericana

We show that almost every function (in the sense of prevalence) in a Sobolev space is multifractal: Its regularity changes from point to point; the sets of points with a given Hölder regularity are fractal sets, and we determine their Hausdorff dimension.

Hurewicz scheme

Michal Staš (2008)

Acta Universitatis Carolinae. Mathematica et Physica

Hydrodynamic limit of a d-dimensional exclusion process with conductances

Fábio Júlio Valentim (2012)

Annales de l'I.H.P. Probabilités et statistiques

Fix a polynomial Φ of the form Φ(α) = α + ∑2≤j≤m  aj  αk=1j with Φ'(1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on 𝕋 d , with conductances given by special class of functionsW, is described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ = ∑d  ∂xk  ∂Wk  Φ(ρ). We also derive some properties of the operator ∑k=1d  ...

Hydrodynamical behavior of symmetric exclusion with slow bonds

Tertuliano Franco, Patrícia Gonçalves, Adriana Neumann (2013)

Annales de l'I.H.P. Probabilités et statistiques

We consider the exclusion process in the one-dimensional discrete torus with N points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance N - β , with β [ 0 , ) . We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter β . If β [ 0 , 1 ) , the hydrodynamic limit is given by the usual heat equation. If β = 1 , it is given by a parabolic equation involving an operator d d x d d W , where W ...

Currently displaying 741 – 760 of 2145