Henstock-Kurzweil type integrals in -adic harmonic analysis.
A classical theorem of Hurewicz characterizes spaces with the Hurewicz covering property as those having bounded continuous images in the Baire space. We give a similar characterization for spaces which have the Hurewicz property hereditarily. We proceed to consider the class of Arhangel’skii spaces, for which every sheaf at a point can be amalgamated in a natural way. Let denote the space of continuous real-valued functions on with the topology of pointwise convergence. Our main result...
The aim of this paper is to extend the study of Riesz transforms associated to Dunkl Ornstein-Uhlenbeck operator considered by A. Nowak, L. Roncal and K. Stempak to higher order.
It seems impossible to extend the boundary value theory of Hardy spaces to Bergman spaces since there is no boundary value for a function in a Bergman space in general. In this article we provide a new idea to show what is the correct version of Bergman spaces by demonstrating the extension to Bergman spaces of a result of Hardy-Littlewood in Hardy spaces, which characterizes the Hölder class of boundary values for a function from Hardy spaces in the unit disc in terms of the growth of its derivative....
We show that almost every function (in the sense of prevalence) in a Sobolev space is multifractal: Its regularity changes from point to point; the sets of points with a given Hölder regularity are fractal sets, and we determine their Hausdorff dimension.
Fix a polynomial Φ of the form Φ(α) = α + ∑2≤j≤m aj αk=1j with Φ'(1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on , with conductances given by special class of functionsW, is described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ = ∑d ∂xk ∂Wk Φ(ρ). We also derive some properties of the operator ∑k=1d ...
We consider the exclusion process in the one-dimensional discrete torus with points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance , with . We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter . If , the hydrodynamic limit is given by the usual heat equation. If , it is given by a parabolic equation involving an operator , where ...