On logarithmic convexity for differences of power means.
Some observations concerning McShane type integrals are collected. In particular, a simple construction of continuous major/minor functions for a McShane integrand in is given.
In this paper we prove the continuity of fractional integrals acting on nonhomogeneous function spaces defined on spaces of homogeneous type with finite measure. A definition of the molecules which are used in the theory is given. Results are proved for , , BMO, and Lipschitz spaces.
2000 Mathematics Subject Classification: 26A33, 42B20There is given a generalization of the Marchaud formula for one-dimensional fractional derivatives on an interval (a, b), −∞ < a < b ≤ ∞, to the multidimensional case of functions defined on a region in R^n
Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.In this paper the multi-dimensional analog of the Gillis-Weiss random walk model is studied. The convergence of this random walk to a fractional diffusion process governed by a symmetric operator defined as a hypersingular integral or the inverse of the Riesz potential in the sense of distributions is proved.* Supported by German Academic Exchange Service (DAAD).
The influence of Jan Marik in the field of non absolute integration is described in the plane of Czech mathematics. A short historical account on the development of integration theory in the Czech region is presented in this connection together with the recent Riemann sum approach to the general Perron integral.