Displaying 141 – 160 of 2163

Showing per page

A Q -linear automorphism of the reals with non-measurable graph

Stephen Scheinberg (2019)

Commentationes Mathematicae Universitatis Carolinae

This note contains a proof of the existence of a one-to-one function Θ of onto itself with the following properties: Θ is a rational-linear automorphism of , and the graph of Θ is a non-measurable subset of the plane.

A Radon-Nikodym derivative for positive linear functionals

E. de Amo, M. Díaz Carrillo (2009)

Studia Mathematica

An exact Radon-Nikodym derivative is obtained for a pair (I,J) of positive linear functionals, with J absolutely continuous with respect to I, using a notion of exhaustion of I on elements of a function algebra lattice.

A remark on local fractional calculus and ordinary derivatives

Ricardo Almeida, Małgorzata Guzowska, Tatiana Odzijewicz (2016)

Open Mathematics

In this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly.

A review of selected topics in majorization theory

Marek Niezgoda (2013)

Banach Center Publications

In this expository paper, some recent developments in majorization theory are reviewed. Selected topics on group majorizations, group-induced cone orderings, Eaton triples, normal decomposition systems and similarly separable vectors are discussed. Special attention is devoted to majorization inequalities. A unified approach is presented for proving majorization relations for eigenvalues and singular values of matrices. Some methods based on the Chebyshev functional and similarly separable vectors...

A roller coaster approach to integration and Peano's existence theorem

Rodrigo López Pouso (2025)

Czechoslovak Mathematical Journal

This is a didactic proposal on how to introduce the Newton integral in just three or four sessions in elementary courses. Our motivation for this paper were Talvila's work on the continuous primitive integral and Koliha's general approach to the Newton integral. We introduce it independently of any other integration theory, so some basic results require somewhat nonstandard proofs. As an instance, showing that continuous functions on compact intervals are Newton integrable (or, equivalently, that...

Currently displaying 141 – 160 of 2163