Displaying 21 – 40 of 103

Showing per page

Continuity of order-preserving functions

Boris Lavrič (1997)

Commentationes Mathematicae Universitatis Carolinae

Let the spaces 𝐑 m and 𝐑 n be ordered by cones P and Q respectively, let A be a nonempty subset of 𝐑 m , and let f : A 𝐑 n be an order-preserving function. Suppose that P is generating in 𝐑 m , and that Q contains no affine line. Then f is locally bounded on the interior of A , and continuous almost everywhere with respect to the Lebesgue measure on 𝐑 m . If in addition P is a closed halfspace and if A is connected, then f is continuous if and only if the range f ( A ) is connected.

Defects and transformations of quasi-copulas

Michal Dibala, Susanne Saminger-Platz, Radko Mesiar, Erich Peter Klement (2016)

Kybernetika

Six different functions measuring the defect of a quasi-copula, i. e., how far away it is from a copula, are discussed. This is done by means of extremal non-positive volumes of specific rectangles (in a way that a zero defect characterizes copulas). Based on these defect functions, six transformations of quasi-copulas are investigated which give rise to six different partitions of the set of all quasi-copulas. For each of these partitions, each equivalence class contains exactly one copula being...

Differentiation bases for Sobolev functions on metric spaces.

Petteri Harjulehto, Juha Kinnunen (2004)

Publicacions Matemàtiques

We study Lebesgue points for Sobolev functions over other collections of sets than balls. Our main result gives several conditions for a differentiation basis, which characterize the existence of Lebesgue points outside a set of capacity zero.

Extension of Lipschitz functions defined on metric subspaces of homogeneous type.

Alexander Brudnyi, Yuri Brudnyi (2006)

Revista Matemática Complutense

If a metric subspace Mº of an arbitrary metric space M carries a doubling measure μ, then there is a simultaneous linear extension of all Lipschitz functions on Mº ranged in a Banach space to those on M. Moreover, the norm of this linear operator is controlled by logarithm of the doubling constant of μ.

Harmonic analysis of the space BV.

Albert Cohen, Wolfgang Dahmen, Ingrid Daubechies, Ronald DeVore (2003)

Revista Matemática Iberoamericana

We establish new results on the space BV of functions with bounded variation. While it is well known that this space admits no unconditional basis, we show that it is almost characterized by wavelet expansions in the following sense: if a function f is in BV, its coefficient sequence in a BV normalized wavelet basis satisfies a class of weak-l1 type estimates. These weak estimates can be employed to prove many interesting results. We use them to identify the interpolation spaces between BV and Sobolev...

Currently displaying 21 – 40 of 103