Previous Page 2

Displaying 21 – 32 of 32

Showing per page

On the dominance relation between ordinal sums of conjunctors

Susanne Saminger, Bernard De Baets, Hans De Meyer (2006)

Kybernetika

This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas.

Quasi-copulas with quadratic sections in one variable

José Antonio Rodríguez–Lallena, Manuel Úbeda-Flores (2008)

Kybernetika

We introduce and characterize the class of multivariate quasi-copulas with quadratic sections in one variable. We also present and analyze examples to illustrate our results.

The Lukacs-Olkin-Rubin theorem without invariance of the "quotient"

Konstancja Bobecka, Jacek Wesołowski (2002)

Studia Mathematica

The Lukacs theorem is one of the most brilliant results in the area of characterizations of probability distributions. First, because it gives a deep insight into the nature of independence properties of the gamma distribution; second, because it uses beautiful and non-trivial mathematics. Originally it was proved for probability distributions concentrated on (0,∞). In 1962 Olkin and Rubin extended it to matrix variate distributions. Since that time it has been believed that the fundamental reason...

Currently displaying 21 – 32 of 32

Previous Page 2