Displaying 321 – 340 of 402

Showing per page

Some quadratic integral inequalities of Opial type

Małgorzata Kuchta (1996)

Annales Polonici Mathematici

We derive and investigate integral inequalities of Opial type: I s | h h ̇ | d t I r h ̇ ² d t , where h ∈ H, I = (α,β) is any interval on the real line, H is a class of absolutely continuous functions h satisfying h(α) = 0 or h(β) = 0. Our method is a generalization of the method of [3]-[5]. Given the function r we determine the class of functions s for which quadratic integral inequalities of Opial type hold. Such classes have hitherto been described as the classes of solutions of a certain differential equation. In this paper...

Subelliptic Poincaré inequalities: the case p < 1.

Stephen M. Buckley, Pekka Koskela, Guozhen Lu (1995)

Publicacions Matemàtiques

We obtain (weighted) Poincaré type inequalities for vector fields satisfying the Hörmander condition for p < 1 under some assumptions on the subelliptic gradient of the function. Such inequalities hold on Boman domains associated with the underlying Carnot- Carathéodory metric. In particular, they remain true for solutions to certain classes of subelliptic equations. Our results complement the earlier results in these directions for p ≥ 1.

The 123 theorem of Probability Theory and Copositive Matrices

Alexander Kovačec, Miguel M. R. Moreira, David P. Martins (2014)

Special Matrices

Alon and Yuster give for independent identically distributed real or vector valued random variables X, Y combinatorially proved estimates of the form Prob(∥X − Y∥ ≤ b) ≤ c Prob(∥X − Y∥ ≤ a). We derive these using copositive matrices instead. By the same method we also give estimates for the real valued case, involving X + Y and X − Y, due to Siegmund-Schultze and von Weizsäcker as generalized by Dong, Li and Li. Furthermore, we formulate a version of the above inequalities as an integral inequality...

Currently displaying 321 – 340 of 402